Davide Lonigro
Researcher in quantum mechanics
Davide Lonigro
Researcher in quantum mechanics
D. Lonigro, A. Hahn, and D. Burgarth
Open Systems & Information Dynamics 31 (2024), 2450018
Abstract. The evolution of mixed states of a closed quantum system is described by a group of evolution superoperators whose infinitesimal generator (the quantum Liouville superoperator, or Liouvillian) determines the mixed-state counterpart of the Schrödinger equation: the Liouville-von Neumann equation. When the state space of the system is infinite-dimensional, the Liouville superoperator is unbounded whenever the corresponding Hamiltonian is. In this paper, we provide a rigorous, pedagogically-oriented, and self-contained introduction to the quantum Liouville formalism in the presence of unbounded operators. We present and discuss a characterization of the domain of the Liouville superoperator originally due to M. Courbage; starting from that, we develop some simpler characterizations of the domain of the Liouvillian and its square. We also provide, with explicit proofs, some domains of essential self-adjointness (cores) of the Liouvillian.